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Abstract—A hybridized algorithm based on the linear sampling
method and the level set technique is presented. The level set tech-
nique has shown the capability of accurate reconstruction of the
shapes of unknown targets of different materials and arbitrary
shapes but with significant computational time. The linear sam-
pling method has shown comparatively rapid estimation of the tar-
gets’ shapes. The presented algorithm retains the accuracy of the
level set algorithm with significantly reduced computational time
due to the hybridization of the level set method and the linear sam-
pling method. Reconstruction results of Fresnel Institute experi-
mental data are obtained using the hybridized algorithm.

Index Terms—Inverse scattering problem, level set algorithm,
linear sampling method, shape reconstruction.

I. INTRODUCTION

S HAPE reconstruction algorithms have demonstrated sev-
eral potential applications especially in medical imaging,

nondestructive testing, geosciences, and airport security. Over
the last decade, the linear sampling method (LSM) and the level
set method have emerged as state-of-the-art methods in the field
of shape reconstruction [1], [2].
The level set method, in general, is a mechanism to model/

track evolving objects with high flexibility. The basic level set
mechanismwas developed by Osher and Sethian [3]. In the level
set formulation, the evolving object is represented as the inter-
section of a higher order function with a constant value. This
implicit representation facilitates the modeling of curves and
corners as well as disconnected objects [3]–[5]. The level set
technique has been incorporated in a plethora of applications
such as image processing, computer vision, and computational
physics [3]–[5]. Over the last decade, the level set method was
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implemented for microwave imaging of 2-D targets using
and polarizations [6]–[10], reconstruction of experimental
data [11]–[13], 3-D Perfect Electric Conductor (PEC) [14], 3-D
dielectric targets of different materials [15], 3-D bacteria [16],
and 2-D concealed targets hidden behind a wall [17]. In our pre-
vious works using the level set method, the method of moments
(MoM) surface integral equation was used as the forward solver.
The level set reconstruction results showed an excellent capa-
bility for accurate reconstruction of arbitrary shapes, even for
multiple targets with different materials or targets hidden behind
a dielectric wall [17]. However, the drawback was the intensive
computational expenses as reported in [15]–[17]. One thought
to reduce the computational time required by the level set algo-
rithm was to implement the Message Parallel Interface (MPI)
parallelization technique, since the level set algorithm is highly
parallelizable. The parallelized level set algorithm has achieved
a speed up to [18].
The LSM was first developed by Kirsh and Colton [2],

[19]–[21]. Unlike the level set method, the LSM is a nonitera-
tive algorithm that reconstructs the shape of unknown targets
with minimal a priori information. While the level set method
requires the a priori knowledge of the electrical properties
of the targets, the LSM does not require such knowledge. In
addition, the LSM has shown significant speed in obtaining
reasonable estimates of the unknown shapes [19]–[21]. Even
though the LSM was initially invented through numerical
experiments, several studies have proven and clarified the
mechanism through which the LSM works [22].
Moreover, Catapano et al. have provided a physical interpre-

tation to the LSM and linked this physical representation to the
concepts of electromagnetic focusing [23]. The LSMwas devel-
oped for the shape reconstruction of 2-D and 3-D targets, buried
objects, cracks and arcs, and thin objects and screens [21]–[29].
Recently, the LSM algorithm was implemented to retrieve the
dielectric permittivity of targets [29].
Based on our experience with the level set method, the con-

vergence is guaranteed when a sufficient number of data at sev-
eral incidents and receiving directions and frequencies is pro-
vided [15]–[17]. However, the LSM algorithm requires data col-
lected at a number of incident and receiving directions greater
than , where is the wave number and is the minimum
radius of the computational domain that encloses all unknown
targets [21]–[29]. In other word, given a certain number of inci-
dent and receiving directions, there is a limit on the maximum
frequency that can be utilized in the reconstruction using the
LSM.
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The hybridization of the LSM with other algorithms was pre-
viously proposed to address the challenges of the inverse scat-
tering problem [27], [28]. A hybrid, two-step imaging algorithm
was developed by combining the LSM shape reconstruction
algorithm with tomography algorithms such as the Optimized
contrast source-extended Born (O-CS-EB) algorithm [27] and
the Ant Colony Optimization (ACO) algorithm [28]. In [27],
[28], the LSM was employed to reconstruct the shape of the
target in the first step. In the second step, the knowledge of the
shape was used to improve the accuracy of the reconstruction of
the electrical properties in tomography. The goal of the current
paper is a hybridization of the level set shape reconstruction al-
gorithm with the LSM for the sake of speeding up the shape re-
construction. Therefore, unlike the previous reported hybridiza-
tions [27], [28], the LSM is not combined with a tomography
algorithm but with another shape reconstruction algorithm, the
level set, aiming to retain their complementary advantages.
In the hybridization of the LSM and level set algorithm, the

output of the LSM reconstruction is used to initialize the level
set algorithm. It is worth noting that there is some analogy be-
tween using the LSM to initialize the level set algorithm and the
methods used to initialize tomography algorithms. In iterative
tomography algorithms, an initial permittivity distribution is as-
sumed in the imaging domain and is iteratively updated until
the true permittivity distribution in the computational domain
is reconstructed [30], [31]. Examples of methods for choosing
the initial permittivity distributions are the 1st order Born Ap-
proximation [30] and backpropagation [31]. However, the hy-
bridization developed in this paper uses the LSM contour, not a
permittivity distribution, to initialize the level set algorithm.
For simplicity and to conduct a quantitative comparison, the

work will be focused on 2-D homogeneous PEC targets im-
mersed in air using both synthetic and experimental measure-
ments data from the Fresnel Institute website [32], [33]. In this
work, the transverse magnetic polarization is employed
in the reconstruction results; however, a comparison between
the and reconstruction using the level set algorithm
was reported in [10]. While our preliminary synthetic recon-
struction results based on the LSM were published in the con-
ference paper [34], the current work presents the hybridization
of the level set method with the LSM and the implementation
on the experimental data.
This paper is organized as follows: brief discussions of the

level set, the linear sampling method, and the hybridized algo-
rithm are given in Section II. The synthetic and experimental
reconstruction results obtained using the conventional level set,
the conventional LSM, and the hybridized algorithm are pre-
sented in Sections III and IV, respectively, and conclusion re-
marks are given in Section V.

II. SHAPE RECONSTRUCTION ALGORITHMS

In this Section, the main features of the level set and the LSM
are summarized. The measurements are conducted at multiple
frequencies and at multiple incident and receiving directions
(see Fig. 1).

Fig. 1. Inverse scattering problem configuration.

A. Level Set Algorithm

The level set algorithm starts with an arbitrary initial guess
that evolves to the true target. The evolving object is implicitly
modeled as the zero level of a higher order function termed the
level set function (details are given in [12]–[18]). Upon solving
the following Hamilton Jacobi equation, the level set function
is calculated at each pixel in the computational domain as

follows:

(1)

where is the deformation velocity, are the initial values
of the level set function, and is the position vector. The level
set function is zero on the contour or the surface of the
evolving object. Equation (1) is discretized both temporally and
spatially and is solved using the finite difference scheme where
the level set function is updated at each spatial pixel and at each
time iteration. For stability of (1), the Courant-Friedrichs-Lewy
(CFL) condition requires that the numerical velocity, arising
from the finite difference discretization, does not lag the phys-
ical speed. That is, has to be larger than the maximum
value of the deformation velocity in the entire domain.
High resolution results can be obtained when fine spatial dis-
cretization, , is employed in solving (1). In this case,
reduction in the time step is necessary to satisfy the CFL sta-
bility condition [3]–[5]. As a result, larger number of inversion
iteration will be required to achieve the algorithm convergence.
The deformation velocity is defined to decrease the difference

between the measured fields scattered from the true targets and
the fields scattered from the evolving objects [12]–[18]. This
will ensure that the evolving object will converge to the true
target. Hence, the deformation velocity is expressed as
shown in (2)

(2)

[12]–[18]. In (2), is a constant to ensure stability; are
the far field patterns scattered from the evolving object;
are the measured far field patterns scattered from the true target;

and are the incident and scattered measurement di-
rections, respectively; and and are the forward and
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adjoint surface current densities, respectively. The forward cur-
rents are induced due to the incident plane wave, while the ad-
joint currents are induced due to synthetic incident fields repre-
sented by the complex conjugate of the difference between the
scattered and measurements field data (i.e. the back-propaga-
tion fields) [12]–[18]. The forward and adjoint surface current
densities are calculated using the MoM solution of the Elec-
tric Field Integral Equation (EFIE). The computational burden
of the level set method is due to the MoM calculations of the
surface currents at multiple frequencies and for multiple inci-
dences, while the updates of the level set functions do not rep-
resent major computational expenses.
A frequency hopping scheme is employed to provide mul-

tifrequency data, which improves the algorithm robustness
against the nonlinearity and the ill-posedness of the inverse
scattering problem, although there is no guarantee to avoid local
minima. This multifrequency hopping technique has shown
robustness of the level set algorithm in all our previous works
[12]–[18]. Provided that an adequate number of frequencies are
utilized, the level set algorithm always managed to converge to
the true target regardless of the initial guess [12]–[18].
As known, the EFIE can cause a convergence issue if the

operating frequency happens to be the interior resonance of
the evolving object. However, we never encountered this issue
in our previous microwave and higher frequency range works
[12]–[18]. We believe that employing more than one frequency
in the multifrequecny hopping scheme helps the algorithm to
avoid the internal resonance problem of the EFIE formulation.
In case a convergence issue occurs when using EFIE for PEC
targets, the combined field integral equation can be used instead.
In addition, other versions of theMoMwere successfully imple-
mented in our previous work, where the Poggio-Miller-Chang-
Harrington-Wu (PMCHW) integral equation was implemented
for dielectric targets [15].

B. Linear Sampling Method

The linear sampling method is based on solving the following
far field Fredholm equation [19]–[29]:

(3)

where is the far field pattern scattered from
the unknown targets measured at a receiver angle due to
a plane wave excitation at angle . The function
is the unknown to be solved for at each pixel in the imaging
computational domain. The function represents
the far field pattern measured at an angle due to a point
source at [19]–[29]. Equation (3) represents a linear system of
equations to be solved to obtain at all pixels in the do-
main, where is the norm operator. The linear system of equa-
tions of (3) is highly ill-conditioned and, therefore, Tikhonov
regularization is typically implemented using a positive regular-
ization parameter [21]. In the original LSM implementation,
Tikhonov regularization was implemented at each pixel and a
different value of was calculated at each pixel. Brignone et
al. developed a no-sampling LSM adaptation where only one
regularization parameter was calculated for the whole domain

with similar results as the traditional LSM method [35]. In the
current work, a single regularization parameter, , is
employed in the whole domain where is the wavelength in
free space following the work in [23]. This value of is not de-
rived from the no-sampling approach but it is based on physical
considerations as detailed in [23].
The values of at pixels inside the unknown target

are small compared with those outside the target region. The
target can be reconstructed by designating a threshold between
inside and outside the target region [19]–[29]. Different targets
generate different ranges of . Therefore, the optimum
threshold is usually defined relative to the maximum and min-
imum values of for each target [26]. To the best of
our knowledge, there is no rigorous theoretical analysis to sug-
gest the optimum value of this threshold. The optimum rela-
tive threshold is typically estimated via reconstructing similar
known targets, estimating the optimum relative threshold value
for these known targets, and then applying this relative threshold
in reconstructing the unknown targets [26].
A multiple frequencies LSM approach was reported in [25]

where (3) is solved to obtain at each frequency. The
overall multiple frequencies is calculated as the
normalized average of at each frequency based on the
following definition [25]:

(4)

where the summation over represents the summation over the
total number of frequencies .

C. Hybridized Algorithm

In the hybrid algorithm, the LSM is first executed to obtain a
relatively fast estimate of the location and shape of the unknown
target. The LSM is typically conducted at low frequencies since
its implementation requires a number of incident and receiver
angles larger than , where is the wave number and is
the radius of the computational domain.
The principal idea is to use the LSM to rapidly estimate the

contour and then use this contour as the initial guess for the level
set algorithm. The initial guess will be now closer to the true
target compared to unguided initial guesses, which will lead to
a smaller number of inversion iterations in the level set algo-
rithm. In the conventional level set algorithm the initial values
of the level set function at each pixel in the domain are calcu-
lated using the signed distance [12]–[18]. In the hybridized al-
gorithm, the signed distance at each pixel is defined as the min-
imum distance to the selected LSM contour to be used as the
initial guess. The initial level set function is set to be negative
for pixels inside the contour, positive for pixels outside the con-
tour, and zero on the contour.

III. SYNTHETIC RECONSTRUCTION RESULTS

In this section, PEC 2-D targets are considered. In the first
example, the star-shaped target shown as a solid blue contour
in Fig. 2(b) is considered. The star-shape is particularly chal-
lenging because of its multiple length scales. This example is
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Fig. 2. Synthetic star-shaped target. (a) Single frequency 0.6 GHz, LSM con-
tours corresponding to different values of (b) The LSM optimum
reconstruction achieved by selecting the best contour in Fig. 2(a). The true target
is shown in solid blue contour, and the LSM reconstruction is shown as the filled
red region.

used to compare the performance of the conventional level set,
the conventional LSM, and the hybridized algorithms. The per-
formance metrics used in the comparison are the computational
time and the reconstruction error. The reconstruction error is de-
fined as follows [36]:

(5)

where is the total number of pixels inside the true target,
is the total number of pixels in the computational domain, and
is set equal to 0 or 1 if a pixel is correctly or incorrectly clas-

sified, respectively. The conventional error function in shape re-
construction algorithms, known as the cost function, is defined
by the difference between the electric fields scattered from the
reconstructed object and from the true target as reported in pre-
vious works [12]–[18]. However, in the current paper, we imple-
mented a different assessment metric at each pixel in the domain
as defined in (5). This assessment metric is selected because it
provides a direct comparison between the level set and the LSM
algorithms, where the domain in each method is divided into the
same number of pixels.
In this example, the computational domain ranges from 0.4

m to 0.4 m in both - and -directions. It is divided into 250
250 pixels. From our experience with the level set method

[12]–[18], and as anticipated, we obtain good reconstruction re-
sults when the spatial discretization is comparable to the size of
the fine features of the target. In the star example in Fig. 2, the
computational domain was increasingly divided to reach 250
250 pixels which corresponds to a pixel size of 3.2 mm

3.2 mm or at 6 GHz which is the highest frequency em-
ployed ( is the wavelength in air). These pixels are used to
update the level set functions in the domain. Since the dimen-
sions of the target are unknown, the number of pixels cannot be a
priori known, but it can be obtained by progressively increasing
the discretization. In both examples, the CFL stability condition
was kept intact as discussed in (1). It is important to emphasize
that the computational bottleneck of the level set algorithm is
due to the MoM computations of the electric current densities
and not due to the updates of the level set functions at each pixel
in the domain [18]. Therefore, although the number of pixels in

Fig. 3. Synthetic star-shaped target. (a) Average of multiple frequencies LSM
contours corresponding to different values of (b) The LSM
optimum reconstruction achieved by selecting the best contour in Fig. 3(a).

the domain is not changed with frequency, the MoM discretiza-
tion of the evolving object is changed with frequency each time
the algorithm hops to higher frequency in order to avoid over
discretization and hence unnecessarily increase in the CPU and
RAM requirements. In case the range of frequencies used in the
hopping scheme become larger, it may be necessary to change
the pixel size accordingly to avoid over discretization when up-
dating the level set functions.
Twenty incident angles and twenty receiver angles uniformly

distributed around the target are used. For this number of inci-
dent and receiver angles, the maximum frequency that can be
employed successfully in the LSM algorithm is 1.5 GHz. How-
ever, there is no limit on the maximum frequency that can be
employed in the level set algorithm either by itself or in the
hybridized algorithm. The synthetic fields scattered from the
target, calculated using the MoM, are corrupted with random
noise according to the following formula [26]:

(6)
where is a random number ranging uniformly be-
tween 1 and 1. The random noise is added in (6) to avoid the
inverse scattering crime. However, experimental measurements
data are typically plagued with noise sources that are difficult to
exactly emulate in synthetic data.
For the conventional LSM algorithm, eleven frequencies

from 0.5 GHz to 1.5 GHz in steps of 0.1 GHz are utilized. The
LSM algorithm is used to achieve the contour reconstruction
at each frequency. Different frequencies provided different
reconstruction accuracies, and the best accuracy was achieved
using the frequency of 0.6 GHz (details are not shown here
due to space limit). At this frequency, the various contours
corresponding to different values of are presented in
Fig. 2(a). The values of the normalized in Fig. 2(a)
ranged from 0.005 to 0.8995 and the contour closest to the
target is achieved at a value of equal to 0.0069. The
reconstruction from the best contour is shown in Fig. 2(b).
The average of the multiple frequencies LSM is shown in

Fig. 3, where the various contours corresponding to different
values of are presented in Fig. 3(a). The values
of ranged from 0.0091 to 0.6545 and the contour
closest to the target is achieved at a value of equal
to 0.0364. The reconstruction from the best contour is shown
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Fig. 4. Synthetic Star-shaped target, (a) final level set reconstruction of the
star-shaped target using the frequency range 0.5 GHz to 6 GHz. The true target is
shown in blue contour, while the reconstruction is shown as the filled red region.
(b) The normalized cost function of the reconstruction (i.e. the error function).
The dashed vertical lines indicate to where frequency hopping occurs.

TABLE I
SUMMARY OF RECONSTRUCTION TIME AND ERROR USING SYNTHETIC DATA

OF STAR-SHAPED TARGET

in Fig. 3(b). The results of Fig. 2 (single frequency) and Fig. 3
(average of multiple frequencies) show qualitative estimates of
the star-shaped target using the LSM.
For the conventional level set algorithm, twelve frequencies

ranging from 0.5 GHz to 6 GHz in steps of 0.5 GHz are utilized.
The hopping criterion is implemented when the cost function
is unchanged within a threshold of 1% [15], [36]. The initial
guess of a circle with radius 0.32 m located at the center of the
computational domain is used. The final reconstruction is shown
in Fig. 4(a) and the normalized cost function is plotted versus
the number of iterations in Fig. 4(b).
As shown in Fig. 4(b), a total of 5496 iterations were neces-

sary to accurately reconstruct the unknown target. Upon com-
paring Figs. 2 and 3 with Fig. 4, it is clear that the reconstruction
accuracy improved significantly when using the level set algo-
rithm versus the LSM. However, it is important to emphasize
that this improvement is due to the fact that the level set al-
gorithm has utilized higher frequencies than those used in the
LSM. When the same frequencies employed in the LSM al-
gorithm, i.e. 0.5 GHz to 1.5 GHz, were employed in the level
set algorithm (results are not shown) the reconstruction error
was 34%, which is comparable to the LSM reconstructions in
Figs. 2 and 3 (see Table I).
Finally, for the hybridized LSM and level set algorithm, the

estimated contour of the LSM obtained at 0.6 GHz of Fig. 2
is used as the initial guess for the level set algorithm. A fre-
quency range of 0.5 GHz to 6 GHz is used in the level set part
of the hybridized algorithm. Since the true target is unknown, it

is a challenge to estimate an optimum value of that de-
fines which LSM contour minimizes the reconstruction error in
(Figs. 2 and 3). As a result, the best LSM contour is a priori un-
known. Therefore, we demonstrate here the effect of selecting
nonoptimumLSM contours as initial guess for the level set algo-
rithm. Three different contours, corresponding to three different
values of in Fig. 2(a), are used as the initial guess of the
level set part. The results are shown in Fig. 5. These three con-
tours correspond to equal to 0.005, 0.0069, and 0.022,
respectively. These values are selected from the lower range
of since the essence of the LSM algorithm is that the
pixels inside the target have lower values of than those
outside the target. The results of Fig. 5 show that the level set al-
gorithm is independent of the selected LSM contour as the initial
guess and also is independent of whether the LSM contour was
obtained usingmultiple contours as in Fig. 5(a) or single contour
as in Fig. 5(b) and (c). The final reconstructions achieved using
the hybridized algorithm is shown in Fig. 5(d)–(f), and the nor-
malized cost function is plotted versus the number of iterations
for each of the three initial guesses in Fig. 5(g)–(i). The results
show that the three initial guesses in Fig. 5 required 4684, 2206,
and 3560 iterations to converge compared to 5496 iterations in
the conventional level set algorithm. The performance of the
three algorithms is summarized in Table I. The results in Table I
show that the conventional LSM algorithm is several orders of
magnitude faster than the conventional level set algorithm. On
the other hand, the conventional level set algorithm provides
almost one order of magnitude better accuracy than the conven-
tional LSM algorithm at the expense of the increased compu-
tational time. Therefore, the prime advantage of the hybridized
algorithm is retaining the advantages of both techniques. Specif-
ically, the proposed hybridized algorithm achieves the same ac-
curacy as the conventional level set algorithm but with a sig-
nificant reduction in the computational time (see Table I). All
results of this work are obtained using a 2 6 MB cache, 2.66
GHz, and 1333 FSB processor on the Star of Arkansas super-
computer.

IV. EXPERIMENTAL RECONSTRUCTION RESULTS

The experimental measurements from the complex 2-D
PEC U-shaped target, uTM_shaped.exp, are obtained from the
Fresnel Institute database [32], [33].The same comparison of
the previous example is repeated here using the level set, the
LSM, and the hybridized algorithm. The target is shown as the
solid blue contour in Fig. 6(b). The experimental measurements
consisted of 36 incidents angles evenly distribute from 0 to
360 around the target and 49 receiver angles evenly distributed
from 60 to 300 degrees as measured from the incident di-
rection [32], [33]. Eight frequencies equally distributed from
2 GHz–16 GHz were measured. Two sets of measurements
were presented in the uTM_shaped.exp file: (i measurements
with the U-shaped target and (ii) measurements without the
U-shaped target [32], [33]. The calibration of the measurements
in the uTM_shaped.exp file is performed here in two steps.
First the measurements without the target are subtracted from
the measurements with the target to extract the signature of the
target to achieve the parameter which is proportional to
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Fig. 5. Synthetic star-shaped target reconstructed using the hybridized LSM
and level set algorithm (a) First initial guess correspond to LSM with

, (b) Second initial guess correspond to ,
(c) Third initial guess correspond to ; final reconstructions
are shown in (d), (e), and (f), respectively. The normalized cost functions are
shown in (g), (h), and (i) for the first, second, and third initial guess, respectively.

the scattered fields. In the second step of calibration, a reference
target is employed as follows [37], [38]:

(7)

where is the calibrated scattered far field pattern of the
U-shaped target, is the difference between the target and
no target Fresnel measurements of the U-shaped target, is
the difference between the target and no target Fresnel measure-
ments of the reference target, and is the scattered far field
pattern from the reference target calculated using an in house
MoM code. The reference target measurements, , used in
this work are obtained from the rectTM_dece.exp file in the 2001
Institute Fresnel database. The file contains measurements from
a 24.5 mm 12.7 mm 2-D PEC rectangular target offset form
the center of the computational domain [32], [33].
In the three algorithms, the computational domain ranges

from 0.08 m to 0.08 m in both - and -directions. The
thickness of the arm of the U-shaped target in Fig. 6 is 5 mm
which is relatively thin. Therefore, the computational domain
is discretized into a larger number of pixels, 400 400 pixels
to capture the width of the U-shape. This discretization corre-
sponds to a pixel size of 0.4 mm 0.4 mm or at 16 GHz
which is the highest frequency employed. All the employed
eight frequencies data, ranging from 2 GHz to 16 GHz, are
used in the three reconstruction algorithms. For the conven-
tional LSM algorithm, the average of all frequencies contours
corresponding to are presented in Fig. 6(a) which
ranges from 0.0848 to 0.65 with the contour closest to the target

Fig. 6. Experimental U-shaped target (a) The LSM contours corresponding to
different values of (b) The LSM reconstruction achieved by se-
lecting the best contour in Fig. 7(a).

Fig. 7. Experimental U-shaped target, (a) final reconstruction using the con-
ventional level set algorithm. The true target is shown in solid blue contour,
while the reconstruction is shown as the filled red region. (b) The normalized
cost function of the reconstruction.

at . The reconstruction using the LSM
best contour is shown in Fig. 6(b). A 69% reconstruction error
is calculated using (5) is achieved in this case. When a contour
of is selected instead of 0.1038, the
reconstruction error increased to 77% (results not shown). For
the conventional level set algorithm shown in Fig. 7, a total of
5300 iterations were necessary to obtain the final reconstruction
of Fig. 7(a). The initial guess consisted of a 4 cm radius circle
displaced by a distance of 1 cm to the right of the center of the
computational domain. The hopping criterion is implemented
when a fixed predetermined number of iterations is reached
[16], [36]. In Fig. 7, the cost function hops to the consequent
frequency after 1000 iterations for the first five frequencies
and after 100 iterations for the last 3 frequencies. Another
criterion was tested here which makes the algorithm hop to the
other frequency when the cost function becomes unchanged
within a threshold of 4%. We observed that the former stopping
criterion provides slightly better results. As discussed in [36],
a combination of stopping criteria can also be used to improve
the results. The normalized cost function is plotted in Fig. 7(b)
versus the number of iterations. The level set reconstruction in
Fig. 7(a) successfully retrieved the location and the outer shape
of the target but is not as accurate as the reconstruction achieved
using synthetic data. In this case, a 114% reconstruction error,
using (5), is achieved.
Finally, the results obtained using the hybrid algorithm are

presented in Fig. 8. Two LSM initial guesses are used to test
the hybrid algorithm. In the first case, the best LSM contour
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Fig. 8. Experimental U-shaped target, (a) first initial guess correspond to
LSM with optimum , (b) Second initial guess correspond
to nonoptimum ; final reconstructions using the hybrid
algorithm are shown in (c) and (d), respectively. The associated normalized
cost functions of the hybridized algorithm are shown in Figs. 8(e) and (f),
respectively.

used in Fig. 6(b) is utilized as the initial guess for the level set
algorithm. The final reconstruction of the hybrid algorithm is
shown in Fig. 8(c) and the corresponding normalized cost func-
tion versus the number of iterations is plotted in Fig. 8(e), re-
spectively.
In this case, only 890 iterations are needed for the conver-

gence of the level set algorithm (compared with 5300 iterations
needed in Fig. 7). It should be noted that the same frequency
hopping criteria is employed as in the conventional level set al-
gorithm. The results demonstrate that the best final reconstruc-
tion of the U-Shape target is achieved using the hybridized al-
gorithm upon comparing Figs. 6–8. A comparison is shown in
Table II.
In the second example in Fig. 8, we demonstrate the effect

of selecting a different LSM on the performance of the hy-
brid algorithm when implemented on the U-shape experimental
measurement data of Fig. 7. We heuristically selected an ini-
tial guess from the LSM reconstruction contours corresponding
to . Notice that in Fig. 2 the
best results are obtained when , which is

. The same heuristic selection is applied
in this example. An initial guess corresponding to the best LSM

TABLE II
SUMMARY OF RECONSTRUCTION TIME AND ERROR
USING EXPERIMENTAL DATA OF U-SHAPED TARGET
USING 8 FREQUENCIES RANGING FROM 2–16 GHz

contour is shown in Fig. 8(a), and an ini-
tial guess corresponding to the LSM contour of

is shown in Fig. 8(b)
. Notice the difference between the two initial guesses in

Fig. 8(a) and (b), where a ghost shape appears in Fig. 8(b). The
error in the conventional LSM reconstruction of the optimum
contour shown in Fig. 8(a) is 69% versus the error of 84% in
the nonoptimum contour of Fig. 8(b) as summarized in Table II.
The results of Fig. 8(c) and (d) show the final reconstructions
using the hybridized algorithm for the initial guess of Fig. 8(a)
and (b), respectively. The associated normalized cost functions
of the hybridized algorithm are shown in Fig. 8(e) and (f), re-
spectively. Notice in Table II that when the nonoptimal initial
guess is used, the hybridized reconstruction is still 3 times faster
than the conventional level set algorithm and significantly more
accurate than the conventional LSM. As anticipated, the recon-
struction CPU time of the hybrid algorithm is 4.8 hours when
the nonoptimal contour is selected, which is more than the 3.5
hours required when the optimum contour is selected.
Unlike the synthetic data example of the star-shape and other

cases (not presented here for space limits), it is observed here
that the conventional level set algorithm provided a higher re-
construction error compared with the conventional LSM algo-
rithm. This observation could be due to the limited number
of frequencies available in the 2001 Fresnel Institute measure-
ments, which possibly limited the performance of the conven-
tional level set algorithm. In all our previous work where syn-
thetic data [14]–[18] or our experimental data [12], [13] was
used, the final reconstruction using the level set algorithm was
in very good agreement with the true targets; however, other
metrics than (5) were calculated in [12]–[18].
In summary, the obtained results demonstrate that the LSM

algorithm is significantly faster than the level set algorithm;
however, the LSM has a constraint on the maximum frequency
that can be employed. Also, there is no rigorous approach
to select the best relative threshold for in the LSM
for the best contour selection. However, the results show that
hybridizing the LSM with the level set algorithm mitigates
these two limitations. In other words, the higher frequencies
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that cannot be employed directly in the LSM, can be employed
in the level set part of the hybridized algorithm. Also, if there
was an error in selecting the LSM contour based on a relative
threshold of , the level set part of the hybridized
algorithm improves the reconstruction and mitigates the effect
of this error.
On the other hand, the conventional level set algorithm uses

an unguided selection of the initial guess which increases the
computational time. Because the selected LSM contour is used
as the initial guess, it is closer to the unknown contour of the
target, and therefore the hybrid algorithm uses a smaller number
of iterations to converge compared to the conventional level set
algorithm.
The larger reconstruction error observed when the conven-

tional level set algorithm is used to retrieve the U-Shape target
using experimental data can also be attributed to the inherited
drift noise in the data that may need additional signal processing
to minimize its effect [12] and [39]. This noise might have
caused the conventional level set algorithm, which employs
an unguided initial guess, to get stuck at a local minimum.
However, the hybrid algorithm was not affected as much by this
noise because it started from an initial guess close to the target,
and therefore it was able to escape from this local minima
caused by the experimental noise. Therefore, hybridizing the
LSM with the level set technique not only reduces the com-
putational time of the reconstruction but it also improves its
accuracy when other types of noise exist, especially in exper-
imental data. Finally, the frequency hopping scheme used in
the conventional level set algorithm was observed in previous
works to affect the performance of the level set algorithm, but
a reduction in that effect is noticed when hybridizing with the
LSM.

V. CONCLUSION

While the LSM provides rapid shape estimation, more quan-
titative images are sometimes needed in applications such as
medical imaging. Therefore, hybridization with the level set
algorithm has demonstrated better accuracy and significantly
reduced computational time when individually compared with
each conventional algorithm. Although the reconstruction error
and the CPU time shown in in Table II look better when the
conventional LSM algorithm was used, they rely on the selec-
tion of the best contour which is not a priori known. On the
other hand, and as shown in the star-shape example in Table I,
neither the conventional level set algorithm nor the hybridized
algorithm depend on the selection of the best contour. In this
work, we demonstrated the advantages of the hybridized algo-
rithm for 2-D PEC targets, but the work can be extended to 3-D
dielectric targets in straightforward manner.
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