On March 6, 2017, President Trump signed a new Executive Order affecting travel and entry of foreign nationals from certain countries. The Executive Order "Protecting the National from Foreign Terrorist Entry Into the United States" revokes and replaces the January, 27, 2016 Executive Order (EO 13769) that was suspended by the Ninth Circuit Court of Appeals. Highlights of the EO are below:

SCOPE:

--Prohibits entry of refugees for 120 days (not only refugees from Syria).

--Prohibits the entry of nationals of 6 countries: Iran, Libya, Somalia, Sudan, Syria and Yemen.

--Applies to individuals **outside** of the US on January 27, 2017 who did not have a valid visa as of January 27, 2017, and who do not have a valid visa on March 16, 2017.

EXCEPTIONS:

Unlike the January 27th Executive Order, this EO has clear exceptions described below, as well as some additional exceptions for diplomats and other less common scenarios:

--Does not apply to permanent residents of the United States;

--Does not apply to anyone who has a valid Advance Parole travel document, or other entry document that is not a visa;

--Does not apply to dual nationals of the six countries; as long as they are travelling on the passport of a different country;

--Does not apply to anyone already granted asylum, or to any refugees already admitted to the US.

CASE-BY-CASE WAIVERS:

In addition, the Consulate Officer or CBP Official may decide on a case-by-case basis to authorize a visa or permit entry if the individual can demonstrate it would cause undue hardship and that his or her entry would not pose a threat to the national security and would be in the national interest.

Appropriate consideration for case-by-case entry waivers include, but are not limited to the following: individuals with significant contacts to the US but who were outside of the US on 3/16/3017 for reasons such as work or education; individuals with significant US business or professional obligations that would be impaired if entry is denied; individuals intending to visit or reside with US citizens or permanent residents, provided that the individual can show that the denial of entry during the suspension period would cause undue hardship to the US citizen or permanent resident; infants, adoptees and certain individuals needing urgent medical care; current or prior US government employees and others with
government related duties; individuals who are landed immigrants in Canada who apply for visas at a US consulate in Canada.

VISA INTERVIEW WAIVER PROGRAM

The EO directs the Dept of State to immediately suspend the Visa Interview Waiver Program (not to be confused with the Visa Waiver Program).

Excludes foreign nationals traveling on a diplomatic or diplomatic-type visa, a NATO visa, C-2 visa for UN travel, or a G-1/G-2/G-3/G-4 visa; those traveling for purposes related to an international organization designated under the IOIA; or those traveling for purposes of conducting meetings or business with the US government.

(The VIWP allowed consular officers to waive the interview requirement for applicants seeking to renew nonimmigrant visas within 12 months of expiration of the initial visa in the same classification. The VIWP has been used to waive the interview requirement only for travelers who have already been vetted and determined to be a low security risk and who have a demonstrated track record of stable employment and stable travel.)

Note that the order calls for the Secretary of State to expand the Consular Fellows program, in an attempt to mitigate the Order's effect on wait times. Until enough staff is hired, however, the Order will place enormous burdens on U.S. consulates and embassies - particularly high-volume posts - by increasing already extended interview wait times and processing times, wasting limited resources, and potentially decreasing the quality of consular interviews.

+++++++

RISKS FOR H-1B AND OTHER TRAVELLERS

Individuals who need travelling abroad and applying for visa stamps have always been at risk for delays. With the suspension of the Visa Interview Waiver Process as well as the administration's intention to increase vetting of visa applicants, the risk of delays may increase, particularly for 221g administrative reviews.

Note that 221g administrative review can occur for visa applicants from any country (including traditional US allies); however, it is typically expected for citizens of countries the US has determined are security risks and is also common for citizens from the five "non-proliferation export control countries", including China, India, Israel, Pakistan, and Russia, particularly if those individuals engage in work or research on the Technology Alert List (see "Visa Mantis" information below).

In the current environment, it is good to understand what kinds of security clearances individuals may face during the consular visa stamping process. **Note that details of the following security clearances have been redacted from the Foreign Affairs Manual, and may have undergone changes in the past few years; however, below is a summary of traditional procedures used by US consulates in screening visa applicants.**

The four most common security clearances encountered by those requesting a non-immigrant visa to enter the U.S. are called:

1. **Visas Condor**—This security check is most often triggered by country birth, citizenship, or permanent residency in one of the following countries: Afghanistan, Algeria, Bahrain, Cuba, Djibouti, Egypt, Eritrea, Indonesia, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Malaysia, Morocco, North Korea, Oman, Pakistan, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, Turkey, the United Arab Emirates, and Yemen.
(2) **Visas Mantis**—This security check may be triggered by the Technology Alert List (TAL). The Technology Alert List (TAL) is a list of technologies that the US federal government has determined are "sensitive", particularly technologies that may be used in weapons or have "dual use" in both civilian and military applications. While the TAL is not new, and individuals from any country have always faced the risk of 221g security clearances, delays may be more common in the current environment, particularly with the non-proliferation export control countries and the countries listed in (1) above. Note that the TAL may affect a number of different areas, including researchers, scientists, engineers and others working in chemistry, biochemistry, immunology, chemical engineering, aeronautics and other similar fields, if not in the public domain. The government no longer publishes the TAL, but the historical list is attached.

(3) **Visas Donkey** —This security check is typically triggered by a name match with another person, generally for non-criminal issues.

(4) **The National Crime Information Center (NCIC) check** —This security check is typically triggered by a name match with a person with a criminal record.

If a consular officer has a security related concern, he/she will notify the visa applicant that a decision is being held for "Administrative Review" or "221(g) clearance". The consular officer then requests a Security Advisory Opinion (SAO) from the Dept. of State, which may gather information from other agencies, such as the FBI, CIA, Dept. of Homeland Security, and international agencies, such as Interpol before a clearance is received. The process can be completed in a few days or may take several weeks, or longer. Note that any visa applicant from any country has always faced some risk of an Administrative Review/221(g) clearance. In light of the Executive Order, however, risks of delays may be higher than in the past, for any individual requesting a visa stamp from a US consulate abroad. As you might imagine, a citizen of the UK who teaches English literature in the US is likely to face a significantly lower risk of Administrative Review than a Physicist from China or a Chemist from Saudi Arabia. We would encourage individuals to check the attached Technology Alert List to assess possible risks of travel.

Customs Border Protection (CBP) estimates that almost 1,000,000 people enter the United States every day, and the vast majority of those individuals do not experience any issues; however, the above information may help ascertain risks of international travel at this time.
Conventional Munitions
These include technologies associated with:
- Warheads and other large caliber projectiles
- Reactive armor and warhead defeat systems
- Fusing and arming systems.
- Electronic countermeasures and systems
- New or novel explosives and formulations
- Automated explosive detection methods and equipment

Nuclear Technology
Technologies associated with production and use of nuclear material for both peaceful and military applications. Included are technologies for:
- Enrichment of fissile material
- Reprocessing irradiated nuclear fuel to recover produced plutonium
- Production of heavy water for moderator material
- Plutonium and tritium handling
Also, certain associated technologies related to nuclear physics and/or nuclear engineering. Includes materials, equipment or technology associated with:
- Power reactors, breeder and production reactors
- Fissile or special nuclear materials
- Uranium enrichment, including gaseous diffusion, centrifuge, aerodynamic, chemical,

Electromagnetic Isotropic Separation (EMIS), Laser Isotope Separation (LIS)
- Spent fuel reprocessing, plutonium, mixed oxide nuclear research Inertial Confinement Fusion (ICF)
- Magnetic confinement fusion
- Laser fusion, high power lasers, plasma,
- Nuclear fuel fabrication including Mixed Oxide (uranium- plutonium) fuels (MOX)
- Heavy water production
- Tritium production and use
- Hardening technology

Rocket Systems
These include ballistic missile systems, space launch vehicles and sounding rockets and Unmanned Air Vehicles (UAV) (including cruise missiles, target drones, and reconnaissance drones). The listed technologies are associated with rocket systems and UAV systems. The technology needed to develop a satellite launch vehicle is virtually identical to that needed to build a ballistic missile.

Rocket System And Unmanned Air Vehicle (UAV) Subsystems
Propulsion technologies include solid rocket motor stages, and liquid propellant engines. Other critical subsystems include re-entry vehicles, guidance sets, thrust vector controls and warhead safing, arming and fusing. Many of these technologies are dual-use. Technologies include:
- Liquid and solid rocket propulsion systems
- Missile propulsion and systems integration
- Individual rocket stages or staging/separation mechanism
- Aerospace thermal (such as superalloys) and high-performance structures
- Propulsion systems test facilities

Navigation, Avionics And Flight Control Useable In Rocket Systems And Unmanned Air Vehicles (UAV)
These capabilities directly determine the delivery accuracy and lethality of both unguided and guided weapons. The long-term costs to design, build and apply these technologies have been a limiting proliferation factor. Technologies include those associated with:
- Internal navigation systems
- Tracking and terminal homing devices
- Accelerometers and gyroscopes
- Rocket and UAV and flight control systems.
- Global Positioning System (GPS)
Chemical, Biotechnology and Biomedical Engineering
The technology used to produce chemical and biological weapons is inherently dual-use. The same technologies that could be applied to develop and produce chemical and biological weapons are used widely by civilian research laboratories and industry; these technologies are relatively common in many countries. Advanced biotechnology has the potential to support biological weapons research. In the biological area, look for interest in technologies associated with:
- Aerobiology (study of microorganisms found in the air or in aerosol form)
- Biochemistry
- Pharmacology
- Immunology
- Virology
- Bacteriology
- Mycology
- Microbiology
- Growth and culturing of microorganisms
- Pathology (study of diseases)
- Toxicology
- Study of toxins
- Virulence factors
- Genetic engineering, recombinant DNA technology
- Identification of nucleic acid sequences associated with pathogenicity
- Freeze-drying (lyophilization)
- Fermentation technology
- Cross-filtration equipment
- High "DOP-rated filters" (e.g., HEPA filters, ULPA filters)
- Microencapsulation
- Aerosol sprayers and technology, aerosol and aerosolization technology
- Spray or drum drying technology
- Milling equipment or technology intended for the production of micron-sized particles
- Technology for eliminating electrostatic charges of small particles
- Flight training
- Crop-dusting, aerosol dissemination
- Unmanned aerial vehicle (UAV) technology
- Fuses, detonators, and other munitions technology
- Submunitions technology
- Computer modeling of dissemination or contagion
- Chemical absorption (Nuclear-Biological-Chemical (NBC) protection)

In the chemical area, look for:
- Organo-phosphate chemistry
- Neurochemistry
- Chemical engineering
- Chemical separation technology
- Pesticide production technology
- Pharmaceutical production technology
- Chemical separation technology
- Toxicology
- Pharmacology
- Neurology
- Immunology
- Detection of toxic chemical aerosols
- Chemical absorption (Nuclear-Biological-Chemical (NBC) protection)
- Production of glass-lined steel reactors/vessels, pipes, flanges, and other equipment
- Aerosol sprayers and technology
- Flight training
- Crop-dusting, aerosol dissemination
- Unmanned Aerial Vehicle (UAV) technology
Remote Sensing, Imaging And Reconnaissance
Satellite and aircraft remote sensing technologies are inherently dual-use; increasingly sophisticated technologies can be used for civilian imagery projects or for military and intelligence reconnaissance activities. Drones and remotely piloted vehicles also augment satellite capabilities. Key-word associated technologies are:
- Remote sensing satellites
- High resolution multi-spectral, electro-optical and radar data/imagery
- Imagery instruments, cameras, optics, and synthetic aperture radar systems
- Ground receiving stations and data/image processing systems
- Photogrammetry
- Imagery data and information products
- Piloted aircraft
- Unmanned Air Vehicles (UAV)
- Remotely-piloted vehicles; and drones

Advanced Computer/Microelectronic Technology
Advanced computers and software play a useful (but not necessarily critical) role in the development and deployment of missiles and missile systems, and in the development and production of nuclear weapons. Advanced computer capabilities are also used in over-the-horizon targeting, airborne early warning targeting, Electronic Countermeasures (ECM) processors. These technologies are associated with:
- Supercomputing, hybrid computing
- Speech processing/recognition systems
- Neural networks
- Data fusion
- Quantum wells, resonant tunneling
- Superconductivity
- Advance optoelectronics
- Acoustic wave devices
- Superconducting electron devices
- Flash discharge type x-ray systems
- Frequency synthesizers
- Microcomputer compensated crystal oscillators

Materials Technology
The metallic, ceramic and composite materials are primarily related to structural functions in aircraft, spacecraft, missiles, undersea vehicles, and propulsion devices. Polymers provide seals and sealants for containment of identified fluids and lubricants for various vehicles and devices. High density graphite is used in missile nosetips, jet vanes and nozzle throats. Selected specialty materials (i.e., stealth and the performance of these materials) provide critical capabilities that exploit electromagnetic absorption, magnetic, or superconductivity characteristics. These technologies are associated with:
- Advanced metals and alloys
- Non-composite ceramic materials
- Ceramic, cermet, organic and carbon materials
- Polymeric materials
- Synthetics fluids
- Hot isostatic
- Densifications
- Intermetallic
- Organometals
- Liquid and solid lubricant
- Magnetic metals and superconductive conductors

Information Security
Technologies associated with cryptography and cryptographic systems to ensure secrecy for communications, video, data and related software.

Laser And Directed Energy Systems Technology
Lasers have critical military applications, including incorporation in guided ordinance such as laser guided bombs and ranging devices. Directed energy technologies are used to generate electromagnetic radiation or particle beams and to project that energy on a specific target. Kinetic energy technologies are those used to impart a high velocity to a mass and direct it to a target. Directed energy and kinetic energy technologies have potential utility in countering missiles and other applications.

Look for technologies associated with:
- Atomic Vapor Laser Isotope Separation (AVLIS)
- Molecular Laser Isotope Separation (MLIS)
- High Energy Lasers (HEL) (i.e., laser welders)
- Low Energy Lasers (LEL)
- Semiconductor lasers
- Free electron lasers
- Directed Energy (DE) systems
- Kinetic Energy (KE) systems
- Particle beam, beam rider, electromagnetic guns, Optoelectronics/electro-optics (Europe)
- Optical tracking (i.e., target designators)
- High energy density
- High-speed pulse generation, pulsed power
- Hypersonic and/or hypervelocity
- Magnetohydrodynamics

Sensors and Sensor Technology

Sensors provide real-time information and data, and could provide a significant military advantage in a conflict. Marine acoustics is critical in anti-submarine warfare; gravity meters are essential for missile launch calibration. Look for technologies associated with:
- Marine acoustics
- Optical sensors
- Night vision devices, image intensification devices
- Gravity meters
- High speed photographic equipment
- Magnetometers

Marine Technology

Marine technologies are often associated with submarines and other deep submersible vessels; propulsion systems designed for undersea use and navigation and quieting systems are associated with reducing detectability and enhancing operations survivability. Look for technologies connected with:
- Submarines and submersibles
- Undersea robots
- Marine propulsion systems
- Signature recognition
- Acoustic and non-acoustic detection
- Acoustic, wake, radar and magnetic signature reduction
- Magnetohydrodynamics
- Stirling engines and other air independent propulsion systems

Robotics

Technologies associated with:
- Artificial intelligence
- Automation
- Computer-controlled machine tools
- Pattern recognition technologies

Urban Planning

Expertise in construction or design of systems or technologies necessary to sustain modern urban societies. (PLEASE NOTE: Urban Planning may not fall under the purview of INA section 212 (a)(3)(a), U.S. technology transfer laws, or any other U.S. law or regulation. However, Urban Planning is a special interest item and posts are requested to refer such visa application requests to CA/VO/L/C for further review.) Look for technologies/skills associated with:
- Architecture
- Civil engineering
Community development
Environmental planning
Geography
Housing
Landscape architecture
Land use and comprehensive planning
Urban design